

Rinse Kloek May 2023

Deploying IPv6 and/or CGNAT ?

BACKGROUND OF THIS PRESENTATION

- ISP wants to be able to grow to > 1M end users. (Mainly consumer connections)"
- CFO : "This is the last /16 IPv4 we bought, please seek an alternative"
- IPv6 project + some transition technique was born

IPV6 + A TRANSITION TECHNIQUE

Transition technique	Pro's	Result	Why not choosen
MAP-T/MAP- E/Lw4o6	ISP side is stateless	\bigotimes	CPE won't support it
NAT64	No ipv4 addressing needed	×	IPv6 rollout needs much more time(legacy hardware)
NAT444 a.k.a CGNAT	Works over existing V4 net	\bigcirc	

CFO: "Can we save on IPv4 costs ? => Deploy Carrier Grade Nat (CGNAT)

Engineers: But when do we finally do IPv6..... ??

Legacy IP Only This product does not support the current generation of Internet Protocol, IPv6.

THE BUSINESS CASE OF CGNAT

- CGNAT costs per user is significant lower than current IPv4 market price
- With average traffic per user of ~5 mbit, CGNAT costs are 15 EUR per user.
- 1. Implement CGNAT and migrate users
- 2. Sell IPv4 blocks on the market
- 3. Do it ASAP as V4 prices are decreasing

THE BUSINESS CASE OF CGNAT PART 2

- Support calls can kill the case, be aware for the "5%"
 - Exclude users that do DMZ/Port forwarding (Give them public V4)
 - Easy opt-out users from CGNAT via portal/app
 - Test, test ,test
- Lowering CGNAT traffic, improves business case
 - Bypass CGNAT for internal services (mail/dns)
 - Directly route Google/Netflix traffic from Local Caches. (Thanks Google and Netflix for killing the V6 business case)
 - Implement IPv6 will decrease CGNAT traffic, Finally a business case for IPv6!

CGNAT stats/user	@Peak / user
UDP sessions	24
TCP sessions	29
Total Sessions	53
Conn rate	0.91/s
Traffic in Mbps	2.0 Mbit

IPV6 IMPLEMENTATION AND CHALLENGES

IPV6 IMPLEMENTATION

- RIPE690 (BCOP about prefix assignment) very good starting point!
 - Thank you RIPE for having this document, it made my life easier!
- DHCPv6 (IA_NA /128 on WAN link + IA_PD Prefix Delegation /56
 - Backwards compatible for clients without Prefix Delegation
- Persistant IPv6 Prefix + WAN address static based on DHCPv6 Option 37
- ISC's KEA DHCP + Flex_id plugin makes it very easy to choose where to bind lease to.
- Option 37 is filled with unique connection id (User can swap CPE and keep same prefix)
- Dropping DHCPv6 Release prevents prefix 'release'.
 - We don't want host reservation as it will need provisioning of users.

	kea-dhcp.conf
-	"client-classes": [
	{ "name": "DROP", "test": " <mark>pkt6</mark> .msgtype==8" }
	1,

IPV6 IMPLEMENTATION – NETWORK CHALLANGES

- Aggregation Router resources
 Seperate Global /128 prefix on WAN link takes 3
 HW entries extra
- After discussion with CPE vendor, they made it possible to do DHCPv6 Prefix without DHCPv6 WAN.

	IPv4	PD + NA	PD
Triple play + MGMT VLAN*	4	2	1
HW entries per address**	2	3	3
Total entries	8	6	3

* Only Ipv6 in the Internet VLAN
 ** IPv6 uses 3 HW entires, IPv4 only 2 HW entries

DHCP IA_PD + DHCP IA_NA (2 ND entries, 1 prefix route)	DHCP_PD over link-local (1 ND entries, 1 prefix route)
#show ipv6 neighbors i 6057.47c8.10ec 2001:4c3b:XXXX::1:13 33 6057.47c8.10ec REACH BV10500 fe80::6257:47ff:fec8:10ec - 6057.47c8.10ec REACH BV10500	#show ipv6 neighbors i 6057.47c8.10ec fe80::6257:47ff:fec8:10ec - 6057.47c8.10ec REACH BV10500
<pre>#show route ipv6 subscriber A 2001:4c3b:XXXX:300::/56 [1/0] via fe80::6257:47ff:fec8:10ec, 00:01:55, BVI10500</pre>	<pre>#show route ipv6 subscriber A 2001:4c3b:2000:300::/56 [1/0] via fe80::6257:47ff:fec8:10ec, 00:30:43, BVI10500</pre>

BUGS AND CAVEATS, STORIES BY THE CAMPFIRE

- After upgrade of firmware the CPE started sending DHCPv6 releases after reboot
 - That's the opposite to what RFC9096 suggests.

DHCPv6 relaying deamon crashed after ~30 days on Aggregation router

- Firewall in CPE did **not** firewall the ports on link-local address
- Samsung Smart TV did not work on CGNAT for most customers (DNS interception feature rate limtted DNS traffic, Solution: disable DNS interception)

CONCLUSIONS

- There is a (small) business case for IPv6 if you have deployed CGNAT
- Give customers the option to easily opt-out from CGNAT
- In case of migration to CGNAT, exclude customers that have Port forwarding/DMZ

- IPv6 implementation, challenges are at the edges (CPE and IT processes)
- Persistant prefixes are strongly recommanded
- Be aware of the ND/ARP table growth when enabling IPv6

CTO Quote: "We don't just enable IPv6 because of the business case, but also because our customers want it"

THAT'S ALL FOLKS

QUESTIONS ?

rinse@kindes.nl rinse@IRCNET

Slide 11 / 12

APPENDIX I

References used in project and presentation :

[RIPE 690] IPv6 prefix assignment for end-users, https://www.ripe.net/publications/docs/ripe-690

[GOOGLE] Google Interconnect help Carrier Grade NAT, https://support.google.com/interconnect/answer/7658745?hl=en

[NETFLIX] Netflix Open Connect CGNAT, https://openconnect.zendesk.com/hc/en-us/articles/360036171812-Are-OCAs-compatible-with-CGNAT-Carrier-Grade-NAT-

[KEA] KEA DHCPv6 Design Considerations, <u>https://kb.isc.org/docs/kea-dhcpv6-design-considerations</u>

[KEA] Inifitife leases, https://gitlab.isc.org/isc-projects/kea/-/issues/897

[RFC 6598] IANA-Reserved IPv4 Prefix for Shared Address Space, https://www.rfc-editor.org/rfc/rfc6598

[RFC 7857] Updates to Network Address Translation (NAT) Behavioral Requirements, https://www.rfc-editor.org/rfc/rfc7857

[RFC 7768] Port Management to Reduce Logging in Large-Scale NATs, https://www.rfc-editor.org/rfc/rfc7768

[RFC 7599] Mapping of Address and Port using Translation (MAP-T), https://www.rfc-editor.org/rfc/rfc7599

[RFC 7597] Mapping of Address and Port using Translation (MAP-E), https://www.rfc-editor.org/rfc/rfc7597

[RFC 9096] Improving the Reaction of Customer Edge Routers to IPv6 Renumbering Events, https://www.rfc-editor.org/rfc/rfc9096

[IPv4.global] IPv4 Prior Sales, https://auctions.ipv4.global/prior-sales