

BGP Hijackers That Evade Public Route Collectors*

Presentation by

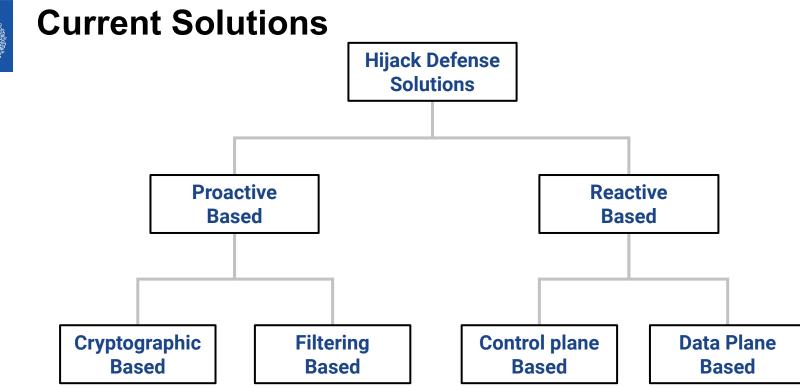
Alexandros Milolidakis miloli@kth.se

* Based on our recent IEEE Access Journal (Link)

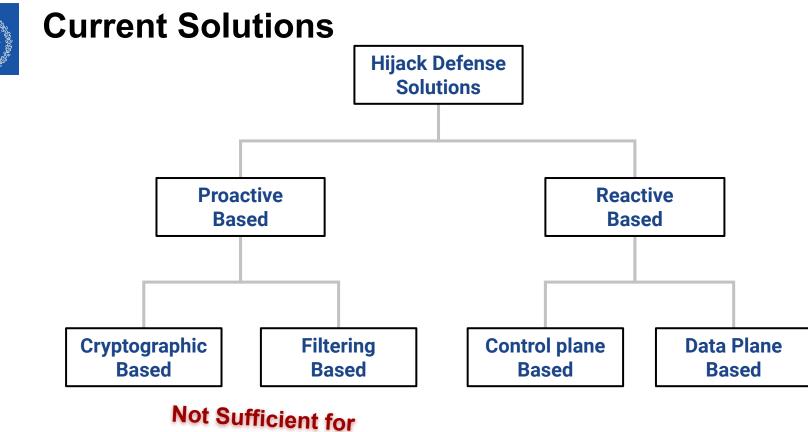
Outline

- Background
- The Problem
- Lessons Learned
- Real-world Findings
- Suggestions

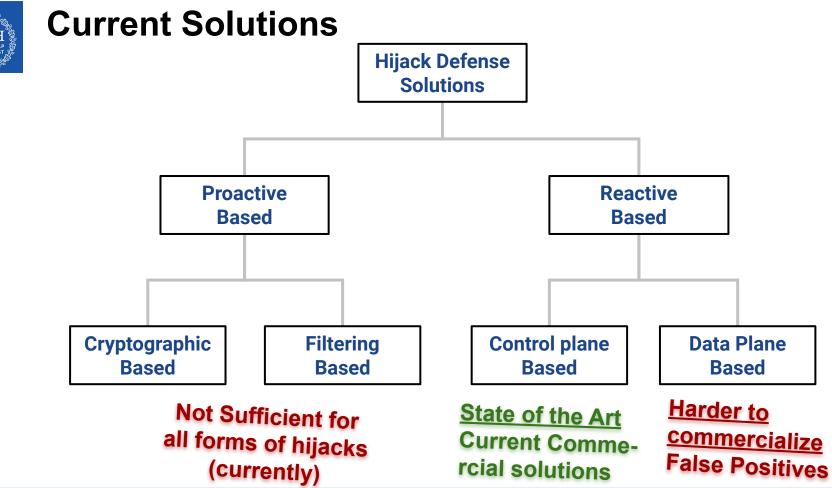
BGP Prefix Hijacking


Documented Suspicious BGP Hijacks:

- Targets 2022: Governmental infrastructure [1], Cryptocurrency services [2], etc.
- Incidents 2021: 775 suspicious BGP hijacks [3].
- Incidents 2020: 2255 suspicious BGP hijacks [4].
- Incidents 2019: 1727 suspicious BGP hijacks [4].


[1] Luconi V. Et al. "Impact of the first months of war on routing and latency in Ukraine", Computer Networks Journal

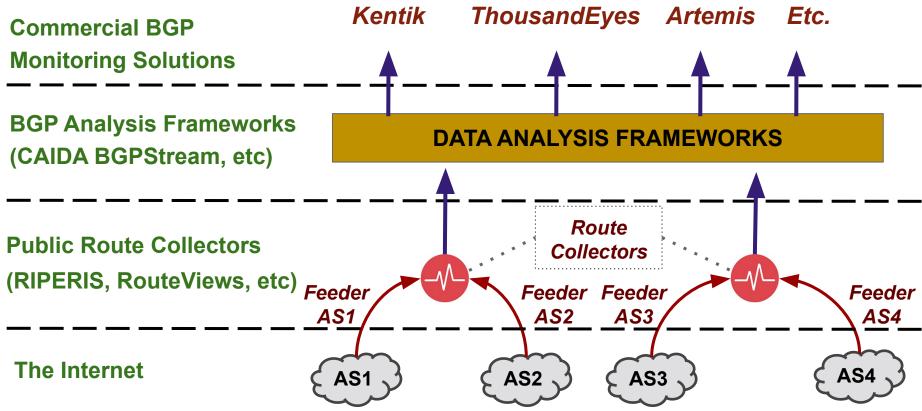
- [2] <u>https://www.kentik.com/blog/bgp-hijacks-targeting-cryptocurrency-services/</u>
- [3] <u>https://www.manrs.org/2022/02/bgp-security-in-2021/</u>
- [4] <u>https://www.manrs.org/2021/03/a-regional-look-into-bgp-incidents-in-2020/</u>



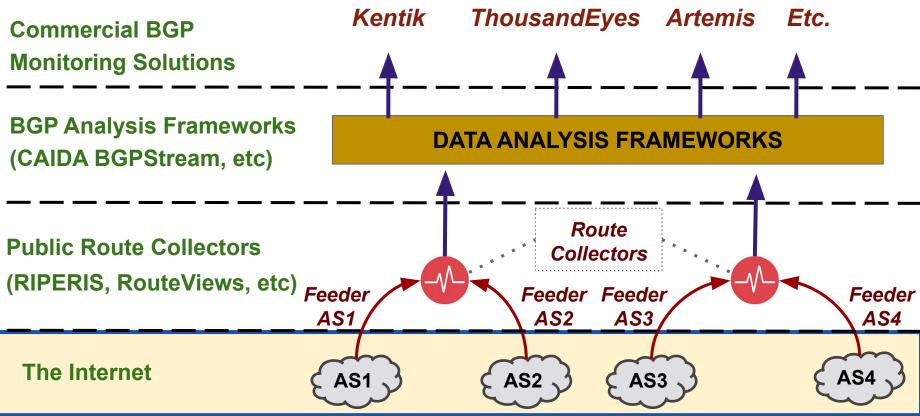
all forms of hijacks (currently)

Current Hijack Solutions

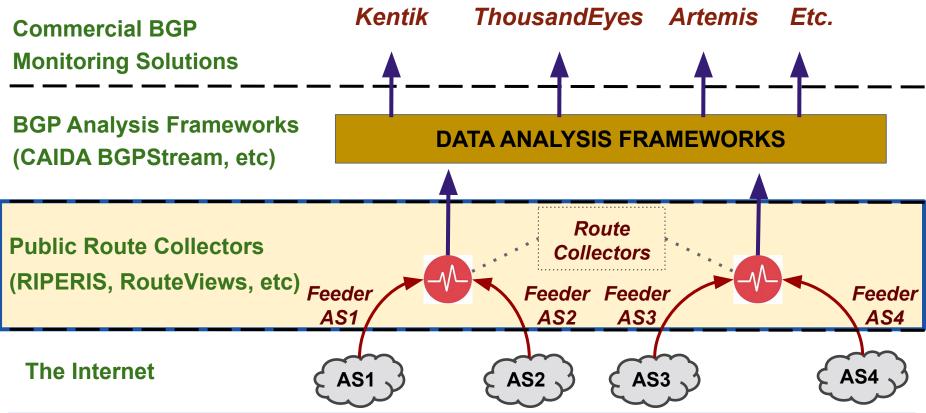
★ Most of current Commercial solutions rely on *Route collectors* & *Looking Glasses*.

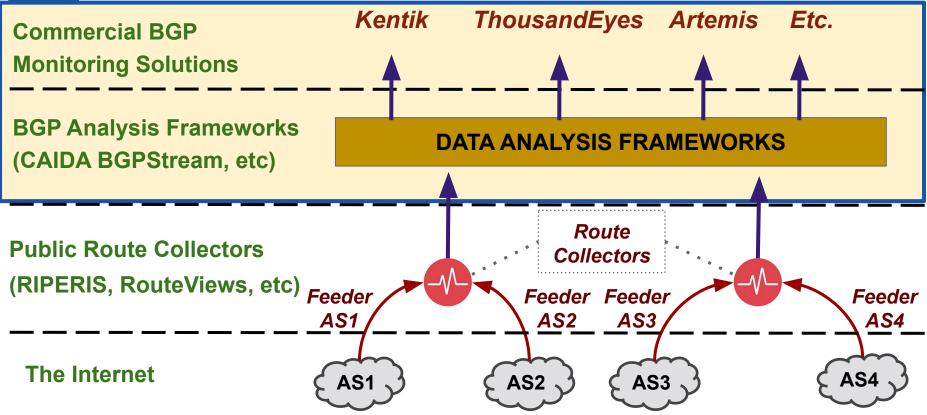

Route Collectors (RC):

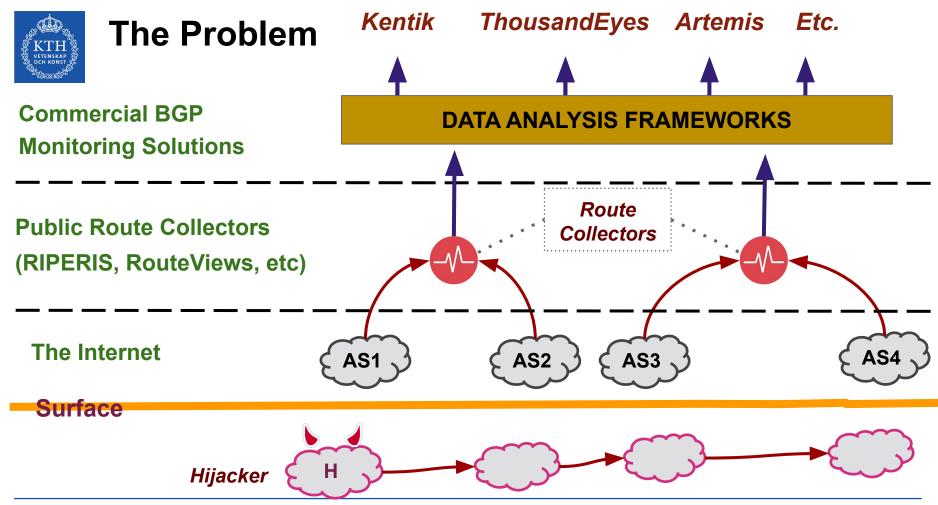
BGP speaking devices that collect & report routes received from their neighbors.

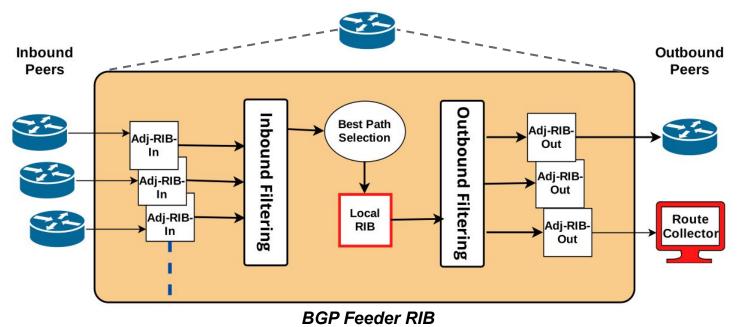

Public Route Collector Infrastructure:

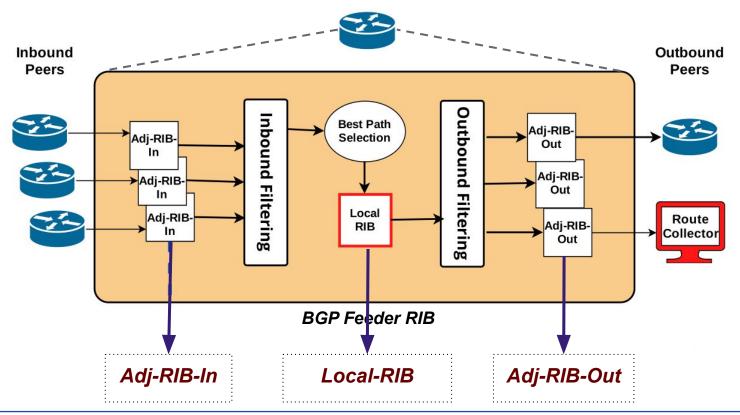
- ✤ Namely: RIPE-RIS, Routeviews, etc.
- Collection of multiple route collectors distributed around the world.



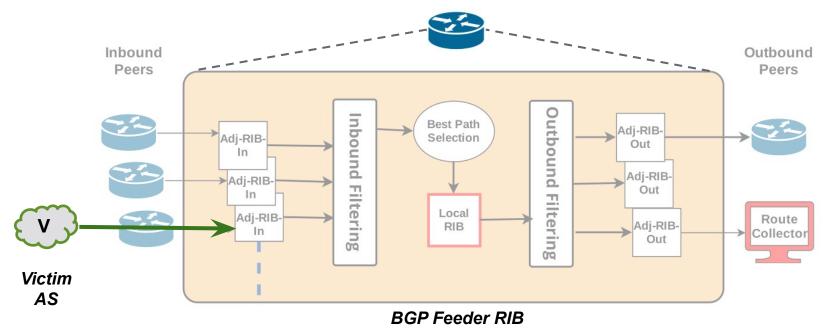




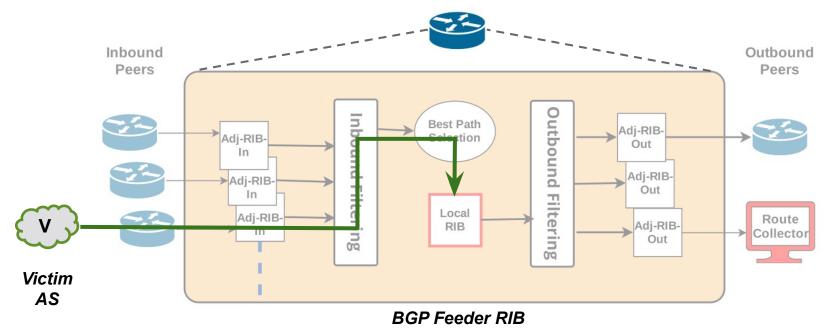




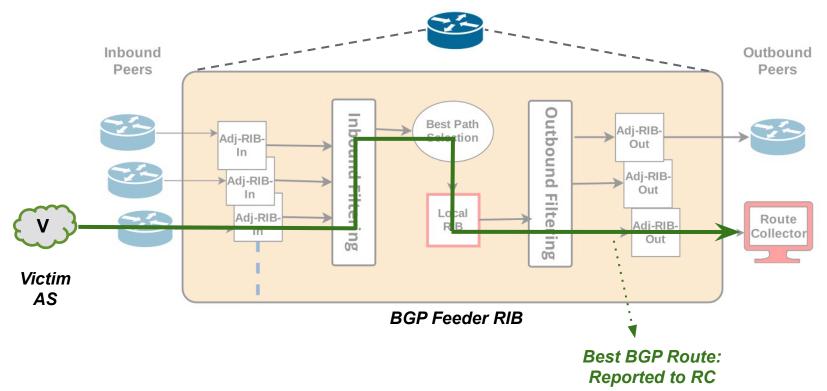
BGP Feeder Device



BGP Feeder Device



BGP Feeder Device

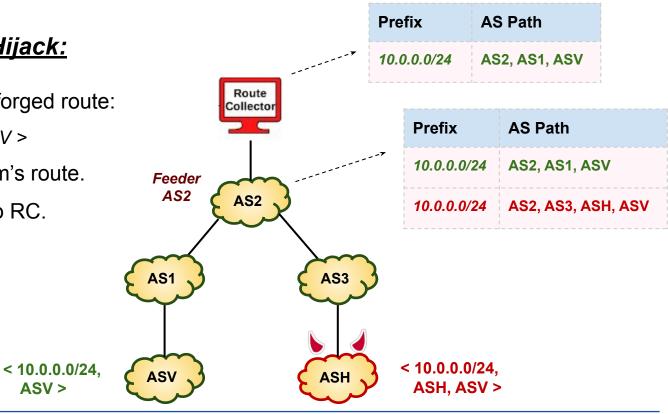


BGP Feeder Device



BGP Feeder Device

BGP Feeder Device



Example of Stealthy Hijack:

Hijacker announces forged route: * < 10.0.0.0/24, ASH, ASV >

ASV >

- AS2 prefers the victim's route. *
- Hijack not reported to RC. *

Presentation Topic

This Presentation:

How capable are hijackers to design stealthy hijacks not visible by RCs?

Presentation Topic

This Presentation:

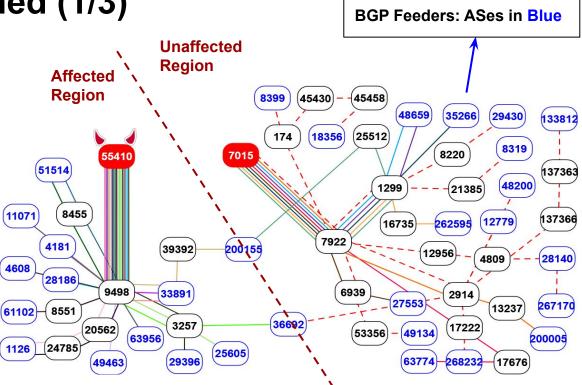
How capable are hijackers to design stealthy hijacks not visible by RCs?

Our Experiments:

- BGP hijack Simulations.*
- Real-world experiments using the PEERING Testbed.*

* For our full experiment results: See our journal.

What we Learned


For a Hijacker to hide from Public RCs:

- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- ✤ Where the hijack is exported matters.

What we Learned (1/3)

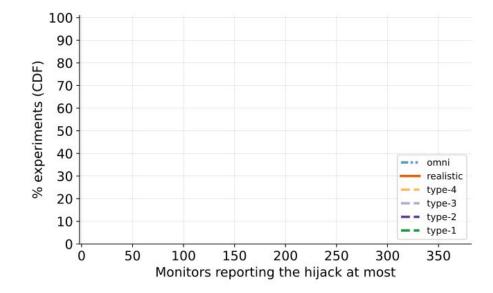
- Knowledge about feeders matters.
- → Unaffected region feeders:
 Do not observe the hijack.
- → Affected region feeders:
 Will observe the hijack.

Fig: Vodafone (AS55410) leaking Comcast (AS7015) prefixes (16-04-21) (Source: Cisco BGPstream monitoring service - visualized using BGPlay)

What we Learned (2/3)

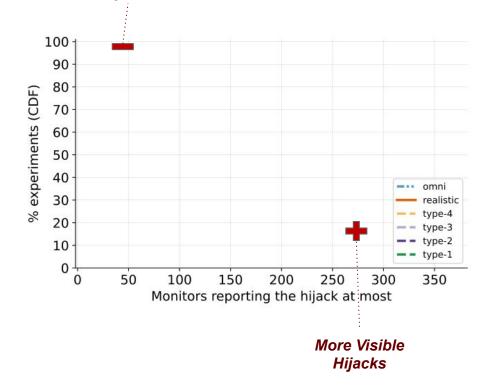
To design not observable hijacks by public RCs:

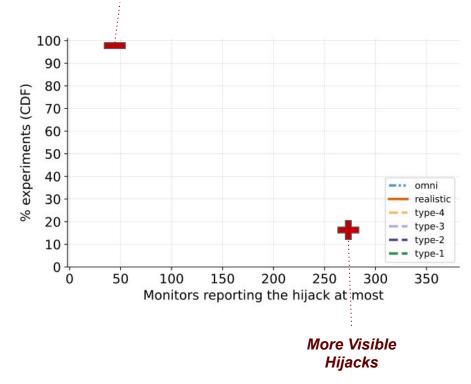
- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.



What we Learned (2/3)

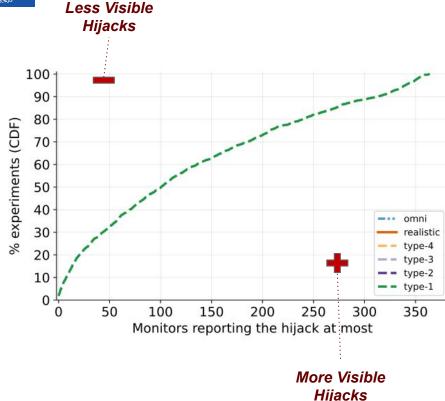
To design not observable hijacks by public RCs:


- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
 - > Baseline hijacker: Traditional hijacker does not deliberately avoid RCs.
 - > *Realistic hijacker:* Limited knowledge inferred from routes public RCs disclose.
 - > Omniscient hijacker: Knows routing policies of every AS in the topology.



Less Visible Hijacks

Less Visible Hijacks



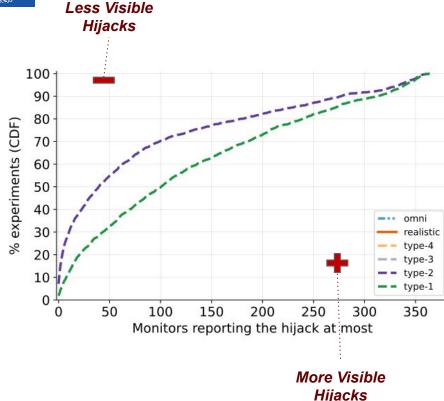
Baseline Hijackers (shape forged paths):

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }

Higher Type: *Longer* forged paths

Baseline Hijackers (shape forged paths):

- Type-0: { ASH }
- Type-1: { ASH, ASV }


Higher Type: Longer forged paths

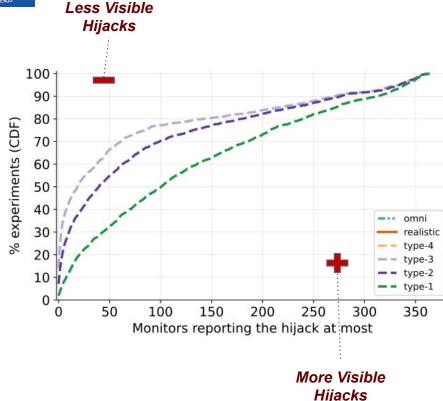
• Type-N: { ASH, ..., ASV }

Visibility (2K simulations)*:

- Type-1: 2% completely stealthy.
- Type-2: 7% completely stealthy.
- Type-3: 15% completely stealthy.
- Type-4: 21% completely stealthy.

Baseline Hijackers (shape forged paths):

- Type-0: { ASH }
- Type-1: { ASH, ASV }


Higher Type: *Longer* forged paths

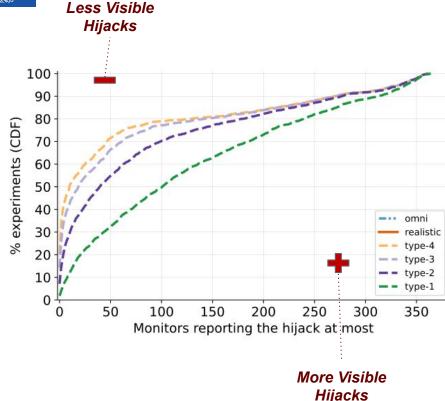
• Type-N: { ASH, ..., ASV }

Visibility (2K simulations)*:

- Type-1: 2% completely stealthy.
- Type-2: 7% completely stealthy.
- Type-3: 15% completely stealthy.
- Type-4: 21% completely stealthy.

Baseline Hijackers (shape forged paths):

- Type-0: { ASH }
- Type-1: { ASH, ASV }


Higher Type: Longer forged paths

• Type-N: { ASH, ..., ASV }

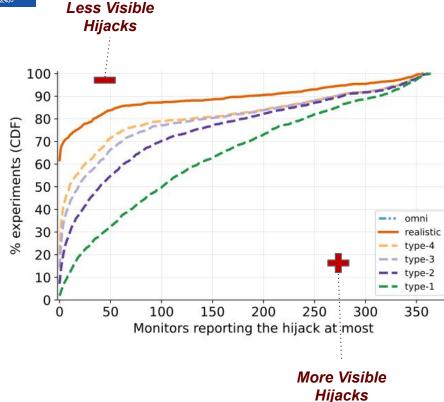
Visibility (2K simulations)*:

- Type-1: 2% completely stealthy.
- Type-2: 7% completely stealthy.
- Type-3: 15% completely stealthy.
- Type-4: 21% completely stealthy.

Baseline Hijackers (shape forged paths):

- Type-0: { ASH }
- Type-1: { ASH, ASV }

Higher Type: *Longer* forged paths


Visibility (2K simulations)*:

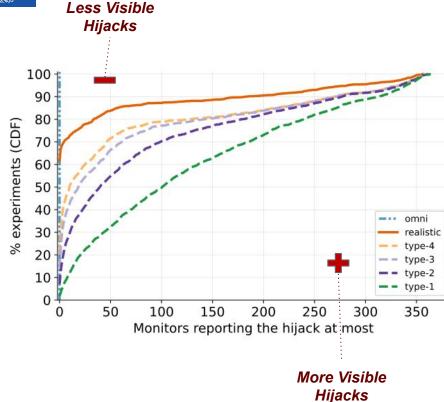
• Type-N: { ASH, ..., ASV }

• Type-1: 2% completely stealthy.

- Type-2: 7% completely stealthy.
- Type-3: 15% completely stealthy.
- Type-4: 21% completely stealthy.

Baseline Hijackers (shape forged paths):

- Type-0: { ASH }
- Type-1: { ASH, ASV }


Higher Type: Longer forged paths

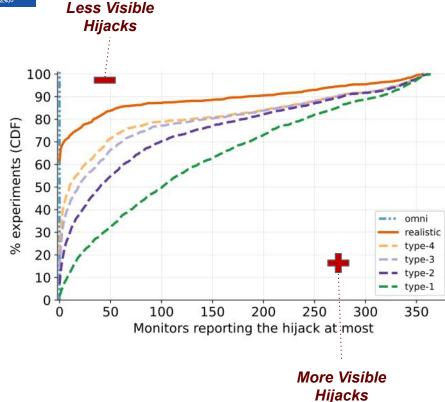
• Type-N: { ASH, ..., ASV }

Visibility (2K simulations)*:

- Type-1: 2% completely stealthy.
- Type-2: 7% completely stealthy.
- Type-3: 15% completely stealthy.
- Type-4: 21% completely stealthy.
- Real: 62% completely stealthy.

Baseline Hijackers (shape forged paths):

- Type-0: { ASH }
- Type-1: { ASH, ASV }


Higher Type: Longer forged paths

• Type-N: { ASH, ..., ASV }

Visibility (2K simulations)*:

- Type-1: 2% completely stealthy.
- Type-2: 7% completely stealthy.
- Type-3: 15% completely stealthy.
- Type-4: 21% completely stealthy.
- Real: 62% completely stealthy.
- Omni: 100% completely stealthy.

Baseline Hijackers (shape forged paths):

- Type-0: { ASH }
- Type-1: { ASH, ASV }

Higher Type: Longer forged paths

• Type-N: { ASH, ..., ASV }

More Findings*:

- Potential Impact stealthy attacks.
- Future topologies: More IXP links.
- Future topologies: More Monitors.

What we Learned (3/3)

- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

What we Learned (3/3)

- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

	# Visible Simulations	Customers	Peers	Transits
Type-1	1963	0.3%	47%	99%
Type-4	1570	0.0%	24%	99%
Realistic	764	0.0%	3%	99%
Omni	0	0%	0%	0%

Table: % visible sims based on where the hijack is exported.

What we Learned (3/3)

- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

	# Visible Simulations	Customers	Peers	Transits	
Type-1	1963	0.3%	47%	99%	k
Type-4	1570	0.0%	24%	99%	
Realistic	764	0.0%	3%	99%	
Omni	0	0%	0%	0%	

Table: % visible sims based on where the hijack is exported.

Routes over Peers

 Easier to influence: Path lengths matter more for such neighbors.

Routes over Transit Providers

• Harder to influence:

Business relations matter more.

What we Learned (3/3)

- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

	# Visible Simulations	Customers	Peers	Transits	
Type-1	1963	0.3%	47%	99%	
Type-4	1570	0.0%	24%	99%	
Realistic	764	0.0%	3%	99%	
Omni	0	0%	0%	0%	

Realistic Hijackers

- Hijacks easier to hide when exported to Peers.
- Harder to hide when exported to transits.

Omni Hijackers

• Completely stealthy.

Table: % visible sims based on where the hijack is exported.

Real World Evaluation: PEERING Testbed

- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

Real World Evaluation: PEERING Testbed

- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

<u>Real World Set-up</u>

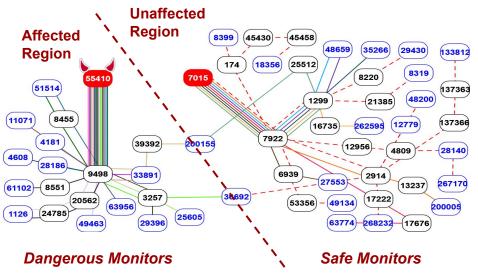
- Testbed: PEERING Testbed to emulate BGP hijacks.
- ✤ Victim: Testbed site at Wisconsin.
- ✤ Hijacker: Testbed site at GRNET and AMS-IX.

Experiment Goals

- → Goal: Design a stealthy hijack not observable by public RCs.
- \rightarrow (1): Ability of hijacker to identify all dangerous monitors.
- \rightarrow (2): Ability of hijacker to circumvent the hijack from reaching RCs.

Binary classification of monitors

- Safe: Will <u>not</u> report the attack.
- ✤ Dangerous: Will report the attack.

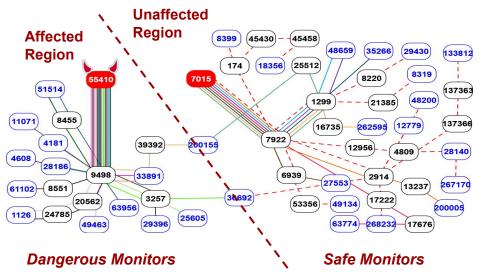


Why Classifying the Monitors Matters

- → Goal: Design a stealthy hijack not observable by public RCs.
- → (1): Ability of hijacker to identify all dangerous monitors.
- → (2): Ability of hijacker to circumvent the hijack from reaching RCs.

Binary classification of monitors

- Safe: Will <u>not</u> report the attack.
- ✤ Dangerous: Will report the attack.



Why Classifying the Monitors Matters

- → Goal: Design a stealthy hijack not observable by public RCs.
- → (1): Ability of hijacker to identify all dangerous monitors.
- → (2): Ability of hijacker to circumvent the hijack from reaching RCs.

Binary classification of monitors

- Safe: Will <u>not</u> report the attack.
- ✤ Dangerous: Will report the attack.
- A Proximity Classifier (AS-path lengths).
- A business relationship Classifier (Gao-Rexford).

		GRNET Transit ASN 5408	AMS Transit ASN 8283	AMS Transit ASN 12859	AMS Peer ASN 9002	AMS Peer ASN 6461	AMS Peer ASN 52320
# Total Monitors							
% Monitors	Accuracy						
Correctly Classified Proximity Classifier	Dangerous (Safe)						
% Monitors Correctly Classified Business Classifier	Accuracy						
	Dangerous (Safe)						

		GRNET Transit ASN 5408	AMS Transit ASN 8283	AMS Transit ASN 12859	AMS Peer ASN 9002	AMS Peer ASN 6461	AMS Peer ASN 52320
# Total Monitors		663	695	683	652	653	653
% Monitors	Accuracy						
Correctly Classified Proximity Classifier	Dangerous (Safe)						
% Monitors	Accuracy						
Correctly Classified Business Classifier	Dangerous (Safe)						

		GRNET Transit ASN 5408	AMS Transit ASN 8283	AMS Transit ASN 12859	AMS Peer ASN 9002	AMS Peer ASN 6461	AMS Peer ASN 52320
# Total Monitors		663	695	683	652	653	653
% Monitors Correctly Classified Proximity Classifier	Accuracy	78%	74%	84%	97%	93%	99%
	Dangerous (Safe)	13% <i>(</i> 99% <i>)</i>	62% (93%)	75% (91%)	100% <i>(</i> 97%)	10% (94%)	100% <i>(99%)</i>
% Monitors Correctly Classified Business Classifier	Accuracy						
	Dangerous (Safe)						

Findings: Transit Providers

Proximity Classifier: Average Accuracy = 78%

NOT sufficient to identify all dangerous monitors

(Overestimates Safe Monitors)

Findings: IXP Peers

Proximity Classifier: Average Accuracy = 96% Possible to identify all dangerous monitors

(But outliers may exist)

		GRNET Transit ASN 5408	AMS Transit ASN 8283	AMS Transit ASN 12859	AMS Peer ASN 9002	AMS Peer ASN 6461	AMS Peer ASN 52320
# Total Monitors		663	695	683	652	653	653
% Monitors	Accuracy	78%	74%	84%	97%	93%	99%
Correctly Classified Proximity Classifier	Dangerous (Safe)	13% (99%)	62% (93%)	75% (91%)	100% <i>(97%)</i>	10% (94%)	100% <i>(</i> 99%)
% Monitors	Accuracy	90%	92%	89%	Same	Same	Same
Correctly Classified Business Classifier	Dangerous (Safe)	95% (89%)	96% (86%)	97% (81%)	Same	Same	Same

Findings: Transit Providers

Business Classifier: Average Accuracy = 90%

Dangerous monitor misclassifications reduced by <= 91%

(At the cost of misclassifying some safe monitors)

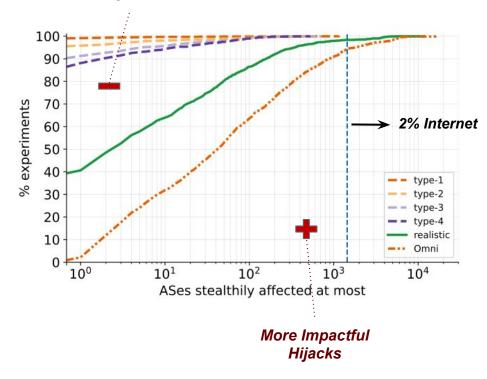
Findings: IXP Peers

Practically Unchanged

Suggestions: Dealing with Hijackers that Avoid RCs

- RQ: How vulnerable are Route Collectors to stealthy attacks?
- Problem: Route collectors may be vulnerable to stealthy attacks if:
 - > (1) BGP Feeders reports their best routes to RC and
 - > (2) The Route Collector is public.
- Prevention methods:
 - Better BGP filtering / Following best practices (ASPA helps!).
 - New feeders: feeders in more strategic locations.
 - Smarter feeders: Forwarding suspicious routes to RC (not just the best route).
 - Feeders Forwarding all routes to RCs (BMP).

Questions?



Appendix

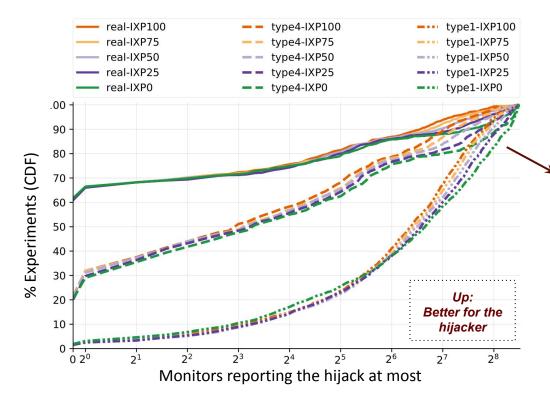
Knowledge Routing Policies Matters – Impact

Less Impactful Hijacks

Baseline Hijackers (forged path shape):

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }

Baseline Hijackers:


Cannot stealthily intercept > 2% Internet

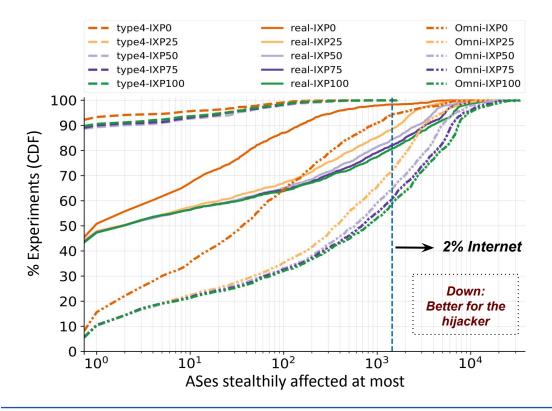
Realistic & Omni Hijackers:

- Stealthily intercepts > 2% Internet: 1.65% and 5.65% sims (respectively)
- Up to 16.2% & 23.5% Internet Stealthily intercepted (respectively)
- * Results based on the AS-level graph

Appendix – Topologies With More IXP Links

Adding more IXP links

- No impact to success rate
- Visible hijacks: stealthier


90th percentile visibility

- Type-1: 28% less monitors
- Type-4: 50.9% less monitors
- Realistic: 48.3% less monitors
- Omni: Still invisible

* Results based on the AS-level graph

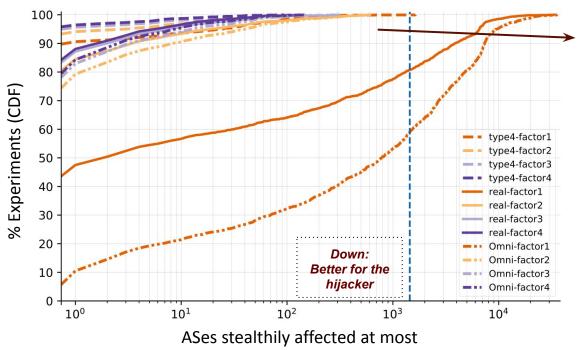
Appendix – Topologies With More IXP Links

Adding more IXP links

• Stealthy hijacks more impactful

Traditional Topology (IXP0)

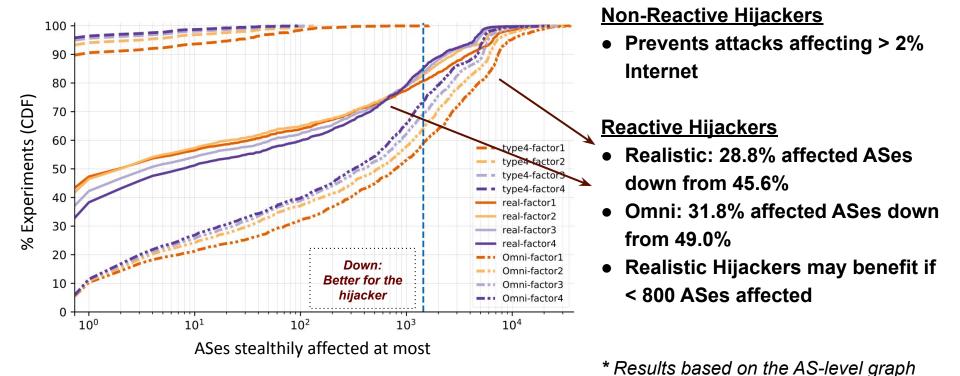
- Type-1: 0.7% affected ASes
- Realistic: 16.2% affected ASes
- Omni: 23.5% affected ASes


Fully IXP Topology (IXP100)

- Type-1: 2.2% affected ASes
- Realistic: 45.5% affected ASes
- Omni: 49.0% affected ASes

* Results based on the AS-level graph

Appendix – Topologies With More Monitors

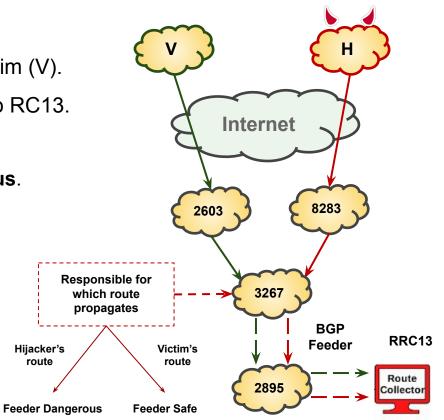

Non-Reactive Hijackers

 Prevents attacks affecting > 2% Internet

* Results based on the AS-level graph

Appendix – Topologies With More Monitors

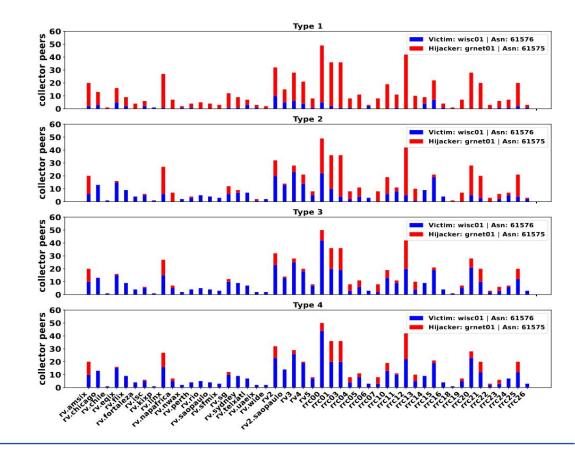
76



Classifying the Feeders: A Real World Example

- → Hijacker (H) announces same prefix as Victim (V).
- → AS3267 chooses which route propagates to RC13.
 - IF V route propagates: Feeder **safe**.
 - ◆ IF H route propagates: Feeder **dangerous**.

Classifiers Tested:


- A Proximity Classifier (AS-path lengths).
- A business relationship Classifier (Gao-Rexford).

Real World: PEERING Testbed

- How the hijack visibility changes (per RC) by announcing less-preferred hijacks.
- ✤ Type-0: { ASH }
- Type-1: { ASH, ASV }
- ✤ Type-N: { ASH, ..., ASV }

Proximity Classifier – Reason for Misclassifications

Proximity Classifier: Reason for Misclassification (FP / FN)	GRnet Transit ASN 5408	AMS Transit ASN 8283	AMS Transit ASN 12859	AMS Peer ASN 9002	AMS Peer ASN 6461	AMS Peer ASN 52320
1. Shortest AS-Path	FP: 1	FP: 2	FP: 0	FP: 0	FP: 1	FP: 0
Violation	FN: 140	FN: 158	FN: 79	FN: 0	FN: 8	FN: 0
a) Longer Path preferred	FP: 0	FP: 1	FP: 0	FP: 0	FP: 1	FP: 0
	FN: 139	FN: 157	FN: 79	FN: 0	FN: 0	FN: 0
b) Victim Path not	FP: 1	FP: 1	FP: 0	FP: 0	FP: 0	FP: 0
observed	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0
c) Hijacker Path not	FP: 0	FP: 0	FP: 0	FP: 0	FP: 0	FP: 0
observed	FN: 1	FN: 1	FN: 0	FN: 0	FN: 8	FN: 0
3. Tie breakers	FP: 2	FP: 15	FP: 29	FP: 15	FP: 33	FP: 1
Violations	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0
d) Victim path preferred	FP: 2	FP: 15	FP: 29	FP: 15	FP: 33	FP: 1
	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0
Total (FP / FN)	FP: 3	FP: 17	FP: 29	FP: 15	FP: 34	FP: 1
	FN: 140	FN: 158	FN: 79	FN: 0	FN: 8	FN: 0

Gao-Rexford Classifier – Reason for Misclassifications

Gao Rexford Classifier Reason for Misclassification (FP / FN)	GRnet Transit ASN 5408	AMS Transit ASN 8283	AMS Transit ASN 12859	AMS Peer ASN 9002	AMS Peer ASN 6461	AMS Peer ASN 52320
1. Gao Rexford	FP: 52	FP: 27	FP: 48	FP: 3	FP: 2	FP: 1
Violation	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0
a) customer - provider	FP:1 FN:0	FP: 0 FN: 0	FP: 0 FN: 0	FP: 0 FN: 0	FP: 0 FN: 0	FP: 0 FN: 0
b) customer - peer	FP: 0 FN: 0	FP: 6 FN: 0	FP: 20 FN:0	FP: 0 FN: 0	FP: 0 FN: 0	FP: 0 FN: 0
c) peer - provider	FP: 51 FN: 0	FP: 21 FN: 0	FP: 28 FN:0	FP: 3 FN: 0	FP: 2 FN: 0	FP: 1 FN: 0
2. Shortest AS-Path Violation	FP: 1 FN: 8	FP: 2 FN: 17	FP: 0 FN: 9	FP: 0 FN: 0	FP: 1 FN: 8	FP: 0 FN: 0
d) Longer Path preferred	FP:0	FP: 0	FP: 0	FP: 0	FP: 1	FP: 0
(Same Gao relation)	FN: 4	FN: 13	FN: 9	FN: 0	FN: 0	FN: 0
e) Longer Path preferred	FP: 0	FP: 1	FP: 0	FP: 0	FP: 0	FP: 0
(Unknown relation)	FN: 3	FN: 3	FN: 0	FN: 0	FN: 0	FN: 0
f) Victim Path not	FP: 1	FP: 1	FP: 0	FP: 0	FP: 0	FP: 0
observed	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0
g) Hijacker Path not	FP: 0	FP: 0	FP: 0	FP: 0	FP: 0	FP: 0
observed	FN: 1	FN: 1	FN: 0	FN: 0	FN: 8	FN: 0
3. Tie breakers	FP: 2	FP: 8	FP: 17	FP: 15	FP: 33	FP: 1
Violations	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0	FN: 0
h) Victim path preferred	FP: 2 FN: 0	FP: 8 FN: 0	FP: 17 FN: 0	FP: 15 FN: 0	FP: 33 FN: 0	FP: 1 FN: 0
Total (FP / FN)	FP: 55 FN: 8	FP: 37 FN: 17	FP: 65 FN: 9	FP: 18 FN: 0	FP: 36 FN: 8	FP: 2 FN: 0

More Results

For more experiment results: Refer to our <u>Published Journal</u>.